Signed Binary

Last updated 3/16/23

These slides introduce signed binary number concepts

- 3 variations of signed binary numbers
- Sign-Magnitude
- One's Complement
- Two's Complement
- Two's complement is used in almost all digital systems
- We will use the names Two's Complement and Signed interchangeably
- Signed Binary (2's complement)
- Binary representation for a number that is can be positive or negative
- Most data
- Often just called "signed"
- Characterized by n-bits
- I have a 32 bit signed binary number

- Bit Values

- The most significant bit is NOT used to represent the magnitude of the value
- The most significant bit INDICATES the sign but is NOT a sign bit
- Positive numbers are formed in normal binary format
- Excluding the msb - it is not used to create the binary value
- Negative numbers are formed by

1) creating the positive binary number
2) flipping all bits
3) adding 1

- MSB $=0 \rightarrow$ indicates a positive value
- MSB = $1 \rightarrow$ indicates a negative value

Signed Binary

- Bit Values

$$
\begin{aligned}
& 50 \rightarrow 00110010 \quad(32+16+2) \\
& -50 \quad \rightarrow \quad 1 \text {) positive value } \\
& \text { 2) flip bits } \\
& \text { 3) add } 1 \\
& 37 \\
& \text {-37 } \\
& 10010110_{\mathrm{b}} \text { signed } \\
& 00010110_{b} \text { signed }
\end{aligned}
$$

- Convert Decimal to Signed Binary

convert 37 decimal to 8 bit signed binary

8 bits \rightarrow positive bit values of $x|64| 32|16| 8|4| 2 \mid 1$

	Positive	\rightarrow	0
37	How many 64s	$\rightarrow 0$	00
37	How many 32s	$\rightarrow 1 r 5$	001
5	How many 16s	$\rightarrow 0$	0010
5	How many 8s	$\rightarrow 0$	00100
5	How many 4s	$\rightarrow 1 r 1$	001001
1	How many 2s	$\rightarrow 0$	0010010
1	How many 1s	$\rightarrow 1 r 0$	00100101
0			00100101

- Convert Decimal to Signed Binary

convert - 37 decimal to 8 bit signed binary

Negative:

1) positive value	\rightarrow	00100101
2) flip bits	\rightarrow	11011010 $3)$ $3)$
	\rightarrow	+00000001

Signed Binary

- Convert Signed Binary to Decimal

convert 00110110 signed to decimal

MSB is 0 (positive) \rightarrow nothing special to do - find value

Positive:

$$
00110110 \rightarrow 32+16+4+2=54
$$

- Convert Signed Binary to Decimal

convert 10010110 signed to decimal

MSB is 1 (negative) \rightarrow remember this for the end
\rightarrow flip the bits and add 1 (works both directions)

Negative:

Evaluate the number (remember the minus sign)
$01101010 \rightarrow 64+32+8+2=106 \rightarrow-106$

Signed Binary

- Convert Signed Binary $\longleftrightarrow \rightarrow$ Decimal

Is it negative (- sign in decimal or 1 in MSB for signed binary)

No - just do the conversion
Yes - flip the bits and add 1

Signed Binary

- Limits

- Maximum values:
- 4 bits $=+7,-8=2^{3}-1,-2^{3}$
- 8 bits $=+127,-128=2^{7}-1,-2^{7}$
- 16 bits $=+32,767,-32,768=2^{15}-1,-2^{15}$
- Not Symmetric

7	6	5	4	3	2	1	0	-1	-2	-3	-4	-5	-6	- 7	- 8
0111	0110	0101	0100	0011	0010	0001	0000	1111	1110	1101	1100	1011	1010	1001	1000

Signed Binary

- Advantages
- Addition is done the same way as unsigned numbers same adder circuit
- ONLY 1 ZERO!
- Simple word length extension
- Disadvantages
- Asymmetric range
- Harder to do comparisons
- Not intuitive

- Sign Extension
- When extending to larger word sizes, extend the MSB to the left

4 bit	8 bit	16 bit
$0110 \rightarrow 00000110$	$\rightarrow 0000000000000110$	
$1001 \rightarrow 11111001 \rightarrow 1111111111111001$		

