
CS4459.003
Cyber Attacks & Defense Lab

Shellcoding Part 1
Feb 13, 2024

1

From Last Class

• Buffer overflow attacks
• Calling convention + stack layout
• No bound check to guard the boundaries

2

Learning Objectives

• Writing programs in assembly (GAS/gas)

• Shellcode/Shellcoding: Load your own payload
• Your payload ‘get_a_shell()’
• Linux access control

• System call
• Vs. library call (glibc)
• 32-bit vs. 64-bit

3

get_a_shell();

Buffer Overflow
• Overflow buffer and overwrite

• local variables
• Previous %EBP
• Function’s return address

main () à run() à recv_input();

• Jump to where you wish to run

%rsp

%rbp

argv, environ, auxv

St
ac

k

buffer

Saved %rbp

Saved %rip

buffer

8 bytes

64-bit Stack

get_a_shell()

• Inherit current privilege and then execute a shell
• You can read the flag!

setregid(getegid(), getegid())
execl(“/bin/bash”, “bash”, 0);

get_a_shell(): setregid()

getegid()
• Get effective GID

setregid(gid_t rgid, gid_t egid)
• Set real and effective gid

setregid(getegid(), getegid())
• Set real and effective gid as current effective gid
• Privilege escalation!
• Set your gid to unit3-level0-…

Linux Access Control: Resource Ownership

• Ownership for user and group
• Who (or which group) owns the file?

• Permissions for User, Group, Other
• Write, Read, eXecution

• Program with setuid, setguid bits
• Atop the privileges of the user, run with the privileges of the file owner instead

9

Linux Access Control: Process Identity

• UserID (UID) and GroupID (GID)
• Defined from /etc/passwd and /etc/group

• Real ID, Effective ID, (Saved ID)
• Real ID: ID of the user that has started the process
• Effective ID: ID the process is running with

10

execl(“/bin/bash”, “bash”, 0);

get_a_shell()

• Transform the process and run “/bin/bash” with arg0 as ‘bash’

exec* function family

execl(filepath, “arg0”, “arg1”, “arg2”, …, “argN”, 0)
• Run program at filepath with args… (arg list ends with ‘\0’)
• exec’l’ à ‘l’ist..

execv(filepath, argv[]);
argv[0] = arg0, argv[1] = arg1, …, argv[N] = argN, argv[N+1] = 0 (ends with \0)
• exec’v’ à ‘v’ector

execve(filepath, argv[], envp[]);
• In addition to execv (for argv),
• envp[0] = env0, envp[1] = env1, envp[2] = env2, …, envp[N] = envN, envp[n+1] = 0

setregid(getegid(), getegid());
execve(“/bin/sh”, 0, 0);

Shellcode

• No longer ‘get_a_shell()’ in real attacks

• Shellcode
• Assembly code snippet that runs a shell (or more

attacks)

• We need to have

http://shell-storm.org/shellcode/

How to Launch Shellcode?

1. Land your shellcode in the target program’s address space
• As a part of your input
• As program’s arguments
• As program’s environmental variables
• As the program’s name (argv[0])

2. Set the return address to your shellcode

3. Run

setregid(getegid(), getegid())
execve(“/bin/sh”, 0, 0);

Writing Shellcode: System Call
• System call

• Channel to talk to OS kernel
• A function call to OS kernel
• Context switch (expensive)

• Eventual gateway to access system resources
• File I/O, network I/O, memory allocation
• Set/get permissions, run program
• Many more

• Varies for different systems and architectures
• Check system call number table for 32 bit (x86) and 64 bit (AMD64)

https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md

System Call Calling Convention

• You can see it as a calling convention between user-land and kernel-land

15

Invoking getuid(): x86

• Set %eax as target system call number

mov $SYS_getegid, %eax // 0x32

• Set arguments
• 1st arg: %ebx
• 2nd arg: %ecx
• 3rd arg: %edx
• 4th arg: %esi
• 5th arg: %edi

• Run
int $0x80 32-bit way

Invoking getuid(): AMD64

• Set %rax as target system call number

mov $SYS_getegid, %rax // 0x6c

• Set arguments
• 1st arg: %rdi
• 2nd arg: %rsi
• 3rd arg: %rdx
• 4th arg: %r10
• 5th arg: %r8

• Run
syscall 64-bit way

getegid(), setregid() : x86

• Return value will be stored in %eax

mov $SYS_getegid, %eax
int $0x80

• %eax will hold the return value of getegid()

• How to run setregid(getegid(), getegid())?

mov %eax, %ebx // 1st arg
mov %eax, %ecx // 2nd arg
mov $SYS_setregid, %eax // syscall number
int $0x80

Calling EXECVE()

// execve(char* filepath, char** argv, char** envp)
execve(“/bin/sh”, NULL, NULL);

%eax = $SYS_execve
%ebx = address of “/bin/sh”
%ecx = 0
%edx = 0
int $0x80

How to Create a String
(‘/bin/sh’)?

%ebx = address of “/bin/sh”

• Use Stack

push $0 // why?
push $0x67832f6e // “n/sh”
push $0x69622f2f // “//bi”

mov %esp, %ebx

Controlling the Attack Surface

• Limit/monitor the input channels to the program (or service)
• Command-line
• STDIN, input files
• Environment variables

• Limit/monitor the contents of the input
• Are you string?
• Are you too lengthy?
• Do you contain any control characters? – e.g., “;”

21

Shellcode with Zero-bytes

• push $0

• Standard functions will cut off your shellcode

scanf(), strcpy(), fgets() …

Removing Zero from Your Shellcode

• You still need Zeros for your code

• Do do you create and use Zeros?

Many Tricks

mov $0x41414141, %eax
sub $0x41414141, %eax

xor %eax, %eax
mov %eax, %ebx

http://shell-storm.org/online/Online-Assembler-and-Disassembler/

• Try it from shell-storm
• NOTE: shell-storm assembler/disassembler only understands ‘Intel’ syntax 😔

Loading You Payload

• Leverages program inputs
• Many sanitizations for their inputs
• E.g., how program cut string end?

• Program will only accept
• ASCII characters
• Alphanumeric characters
• Limits in input length
• No escape characters …

26

How Linux Runs a Program?

Stack for Communication

• Used for
• Storing local variables

• Your input buffer could be here…
• Passing function arguments
• Storing return address
• Storing frame (base) pointer (i.e., saved %ebp)

• Chaining stack frames

• What others?
• filename, ARGV, ENVP, AUX

How Linux Runs a Program?

• Reading:
• How programs get run: ELF binaries

• https://lwn.net/Articles/631631/

• ELF (Executable and Linkable Format)

• Basics:

execve(char *name, char** argv, char **envp)

execve(“program path”, argument_vectors, environment_pointers)

execve(“/bin/sh”, {“sh”, NULL}, {”SHELL=sh”, “TERM=xterm”, …, NULL});

https://lwn.net/Articles/631631/

How Linux Runs a Program?

• Reading:
• How programs get run: ELF binaries

• https://lwn.net/Articles/631631/

• ELF (Executable and Linkable Format)

• Basics:

execve(char *name, char** argv, char **envp)

execve(“program path”, argument_vectors, environment_pointers)

execve(“/bin/sh”, {“sh”, NULL}, {”SHELL=sh”, “TERM=xterm”, …, NULL});

https://lwn.net/Articles/631631/

execve(char *name, char** argv, char **envp)

1. Program path: program to execute; could be an ELF file

/bin/sh , /bin/ls, /usr/bin/python

2. Argument vectors: list of arguments, each as string (char **argv)
• When running “python a.py 1 2 3”,

argv[0] = “python”
argv[1] = “a.py”
argv[2] = “1”
argv[3] = ”2”
argv[4] = “3”

3. Environment Variables: list of environments variables, each as string (char **envp)

“TERM=xterm”
“SHELL=sh”
“EDITOR=/usr/bin/vim”

1. Load the Executable

• From the program path (1st arg to execve), the kernel loads code and data
to the memory space

execve(“/bin/sh”, ….)

• Code section
• Usually starts from 0x8048000 (32 bit), or 0x400000 (64 bit)

readelf -a /bin/sh

• Will store the path name of the program at the bottom of the stack

Program Path
“/bin/sh”

2. Set Environment Variables

• Set environmental variables to the current stack.

Program Path
“/bin/sh”

ENV1

ENV2

ENV3 …

ENV Ptrs

2. Set Environment Variables

• Set environmental variables to the current stack.

Program Path
“/bin/sh”

ENV1

ENV2

ENV3

…

ENV Ptrs

3. Set Argument Vectors

• Set argument vectors to the current stack.
• When running “python a.py 1 2 3”,

argv[0] = “python”
argv[1] = “a.py”
argv[2] = “1”
argv[3] = ”2”
argv[4] = “3”

Program Path
“/bin/sh”

ENV1

ENV2

ENV3

…

ENV Ptrs

ARGV4

ARGV3

…

ARGV Ptrs

4. Call _start

readelf -a …

4. Call _start

• readelf -a …

Addr of _start()

4. Call _start

• readelf -a … Addr of main()

4. Call _start

• readelf -a …
• Calls __libc_start_main

• And then, libc_start_main sets the
address of argv, envp, then calls
main(argc, argv, envp)

Program path

ENVS

ENVP Ptrs

ARGs

ARGV Ptrs

…

ENVP

ARGV

ARGC

The stack of main() starts at here:

Check with GDB

b main
r
x/100x $esp

Backup

40

