
CS4301.002
Cyber Attacks & Defense Lab

Shellcoding – Part2
Feb 20, 2024

1

Unit3-Part2

• ascii-shellcode-{32,64}: shellcode only contains bytes 0x00 ~ 0x7f

• Bonus challenges
• Prime shellcode: shellcode only uses prime numbers
• press-f-to-pay-respect: '0xf' every two byte

Stack-ovfl-* for Unit 3

• All has a buffer overflow vulnerability

• All DO NOT have get_a_shell()

§ You should put your shellcode on the stack and jump there…

How Can You Put Your Shellcode?

• make print

• Send it to the binary via pwntool (writing to the buffer)

• What if it does not let you know or use buffer?

• Put your shellcode as an environment variable

env = {’SHELLCODE’ : SHELLCODE}

• Put your shellcode as a program argument

process(‘program-name’, env=env)

How Can You Put Your Shellcode?

Getting the Shellcode Address

• Use GDB with core!

c = Core(‘core’)
c.stack.find(SHELLCODE)

Running Shellcode

• Requires an exact address of a shellcode…

SHELLCODE

Return to here executes shellcode

Fails Fails

NOP-sled

nop (0x90)
• An instruction that does nothing
• Opcode is 0x90
• Multi-bytes nop exists

SHELLCODENOP Sled (full of 0x90s)

Return to here executes shellcode

Fails Fails

NOP-sled Trick

SHELLCODE = “\x90” * 500 + SHELLCODE

• Return to anywhere at the NOP-sled (sized 500 in this case) will let you run
the shellcode!

SHELLCODENOP Sled (full of 0x90s)

Unit-3 BoF Challenges

• stack-ovfl-sc-32: put your shellcode on your input buffer
• stack-ovfl-use-envp-64: put your shellcode on envp
• stack-ovfl-no-envp-32: put your shellcode on argv
• stack-ovfl-no-envp-no-argv-64: put your shellcode as the filename..
• stack-ovfl-where-32: restrict ret addr to code address..
• Stack-ovfl-where-64-2: remove all data from &argv to stack bottom

Shellcodes from the Wild

• The shorter, the better
• To fit into the smallest possible spaces

• Some special characters to avoid (’\0’, ‘;’, ‘&’ …)
• Input sanitizations are common

• Many public resources

11

Short Shellcode

• Privilege escalation handled
eax = geteuid();
seteuid(eax, eax);

• Executing "/bin/sh" ?

execv("/bin/sh", 0, 0);

12

Think about "context"!

Mind Your Context

• Symbolic link
• An alias of a file
• You can set a new name of a file…

‘/bin/sh’ -> ‘A’ # how many bytes can you reduce?

Reuse Existing Context

• In short-shellcode-32, main()
Calls shellcode here!

Reuse Existing Context
• run and step-in ...

%EBX is zero
%ECX points to somewhere..

%EDX is 0x1….

short-shellcode-32

Backup

16

Alphanumeric

• int $0x80

\xcd\x80

• Non-ASCII, non-printable,
non-alphanumeric

• How?

Alphanumeric

• Create \xcd\x80 from alphanumeric values
• .byte: puts raw bytes, in assembly

• .byte 0x32 (‘0’)
• .byte 0x7a (‘z’)

• Can we create \xcd\x80 by applying some operations on such 0x32,
0x7a?

Alphanumeric

0x32Alpha-numeric code 0x7a

XOR 0xff XOR 0xfa

0xcd 0x80

Execute CD 80, int $0x80!

We call this as ‘self modifying code’…

Helpful Instructions
Make eax -1 only with alphanumeric…
jAX4AH

0xff ^ 0x32 = 0xcd, “f1BA”

Mov registers with push & pop = “PY”

Make ecx 0xfa (0xff+6 = 0xfa..)

0xff ^ 0x7a = 0x80, “0JB”

Do not use pop %ebx. Use popa…

Stack

• Used for
• Storing local variables

• Your input buffer could be here…
• Passing function arguments
• Storing return address
• Storing frame pointer (i.e., saved %ebp)

• What others?
• filename
• ARGV
• ENVP

