
CS4459.001
Cyber Attacks & Defense Lab

Stack Cookies & NX/DEP & ASLR
Feb 27, 2024

1

What Has Happened

• Unit3 Part2 will re-open during
• Tonight 9PM ~ Midnight
• Let have it done this time

• Unit4 Stack Cookies / DEP is out

2

3

0: Disable ASLR. This setting is applied if the kernel is booted with the ”norandmaps” boot parameter.

1: Randomize the positions of the stack, virtual dynamic shared object (VDSO) page, and shared memory regions. The base
address of the data segment is located immediately after the end of the executable code segment.

2: Randomize the positions of the stack, VDSO page, shared memory regions, and the data segment. This is the default setting.

‘checksec’ command

ASLR check

Unit 4

CTF-VM1
• 0-dep-1 (10pt)
• 1-dep-2 (20pt)
• 2-dep-3 (30pt)
• 3-stack-cookie-1 (10pt)
• 4-stack-cookie-2 (20pt)
• 5-stack-cookie-3 (30pt)
• 6-stack-cookie-4 (30pt)

CTF-VM2
• aslr-1 (10pt)
• aslr-2 (10pt)
• aslr-3 (20pt)
• aslr-4 (20pt)
• aslr-5 (30pt)
• aslr-6 (30pt)

4

• Cloned copy if CTF-VM1
• Address Space Layout Randomization (ASLR)

• will learn about it later

• Connect via

ssh <netid>@ctf-vm2.utdallas.edu

CTF-VM2

5

COOKIEBUFFER

Stack Buffer Overflow + Run Shellcode

BUFFER

BUFFER

BUFFER

SAVED %ebp

RETURN ADDR

AAAA

BBBB

CCCC

DDDD

EEEE

ADDR of
SHELLCODE

Defense

• Prevent buffer overflow!
• A direct defense
• Could be accurate but could be slow..

• Make exploit hard!
• An indirect defense
• Could be inaccurate but could be fast..

Exploit Mitigation
DEP, Stack-cookie, ASLR, etc.

Defense

• Base and bound checks
• Prevent buffer overflow!
• A direct defense

• Stack Cookie
• An indirect defense
• Prevent overwriting return address

• Data execution prevention (DEP, NX, etc.)
• An indirect defense
• Prevent using of shellcode

• A FAT pointer

• Allocation

• Access must be between [a_base, a_bound)

char *a
// char *a_base;
// char *a_bound;

Spatial Memory Safety: Base and Bound Checks

A

Base Bounda[-1] a[512]

a[0], a[1], a[2], …, and a[511] are OK
a[512] NOT OK
a[-1] NOT OK

a = (char*) malloc(512);
// a_base = a;
// a_bound = a+512

char *b = a;
// b_base = a_base;
// b_bound = a_bound;

char *c = &b[2];
// c_base = b_base;
// c_bound = b_bound;

Base and Bound Check

• Propagation A

Base Bounda[-1] a[512]

B C

c[1] = ‘a’;
c== b+2 == a+2
c+1 == b+3 == a+3
c_base <= c+1 && c+1 < c_bound

char *c = &b[2];
c_base = b_base
c_bound = b_bound

c[510] = ‘a’;
c == b+2 == a+2
c+510 == b+510+2 == a+510+2 == a+512
c_base <= c+510 but c+510 >= c_bound

Disallow write!

Base and Bound Check
• Propagation

A

Base Bounda[-1] a[512]

B C

Base and Bound Check

• Buffer?
strcpy(c, “A”*510);

• When copying 510th character:

• This is how dynamic languages (e.g., Java, Python, Golang) protect
buffer overflows

• C++ STL (Standard Template Libraies)
• std::vector in C++

c[510] = ’A’;
c+510 > c_bound (c+510 == a+512 > bound…)
Detect buffer overrun!

http://todo.syssec.org/

[PLDI’09]

In Proceedings of
Programming Language Design and Implementation
(PLDI) 2009

ptr = malloc(size);
ptr_base = ptr;
ptr_bound = ptr + size;
if (ptr == NULL) ptr_bound = NULL;

int array[100];
ptr = &array;
ptr_base = &array[0];
ptr_bound = &array[100];

newptr = ptr + index; // or &ptr[index]
newptr_base = ptr_base;
newptr_bound = ptr_bound;

Drawbacks

• +2x overhead on storing a pointer
char *a

char *a_base;
char *a_bound;

• +2x overhead on assignment
char *b = a;

b_base = a_base;
b_bound = a_bound;

• +2 comparisons added on access
c[i]

if(c+i >= c_base) { … }
if(c+i < c_bound) { … }

Many other problems…
• Use more cache
• More TLBs
• etc….

[PLDI’09]

Security vs. Performance Trade-Off
• 100% Buffer Overflow Free

• You pay +200% Performance
Overhead
• Specifically, for memory

operations
• Does it matter?

• Think about the economy…
• Or “Usability”

• Most of the cases, it may not
matter

• A defense specific to sequential stack overflow

• On a function call

• Before the function returns

An Economic Defense: Stack Cookie

COOKIE

BUFFER

BUFFER

BUFFER

SAVED %ebp

RETURN ADDR

cookie = some_random_value;

if(cookie != some_random_value)
printf(“Your stack is smashed\n”);

Stack Cookie: Attack Example

• On a function call

• Before a function returns
COOKIE

BUFFER

BUFFER

BUFFER

SAVED %ebp

RETURN ADDR

AAAA

BBBB

CCCC

DDDD

EEEE

0x8044535 RET

Cookie

cookie = some_random_value;

if (cookie != some_random_value)
printf(“Your stack is smashed\n”);

strcpy(buffer, “AAAABBBBCCCCDDDDEEEE\x35\x45\x04\x08”)

[SEC’98]

COOKIE

BUFFER

BUFFER

BUFFER

SAVED %ebp

RETURN ADDR

In Proceedings of
The 7th USENIX Security Symposium (1998)

Stack Cookie in gcc (ProPolice)

Cookie stored in -0xc(%ebp)

Get canary from %gs

Store canary at ebp-c

Clear canary in %eax

Get canary in stack
Xor that with value in %gs

GCC ProPolice

Stack Cookie in gcc (ProPolice)

Cookie stored in -0xc(%ebp)

Stack Cookie: Overhead

• 2 memory move
• 1 compare

• Per each function call

• 1~5% overhead

Stack Cookie: Assignments

• Stack-Cookie-1
• Bypassing a fixed value cookie
• EASY

• Stack-Cookie-2
• Bypassing a random value cookie (using rand())
• Please defeat rand()

• Stack-Cookie-3
• Bypassing gcc ProPolice

• Stack-Cookie-4
• Overwriting a local variable to not to touch canary!

Stack Cookie: Weaknesses

• Effective for common mistakes
strcpy(), memcpy()
read(), scanf()
• Missing bound check in a for loop

• But can only block sequential overflow

• What if buffer[24] = 0xaa

COOKIE

BUFFER

BUFFER

BUFFER

SAVED %ebp

RETURN ADDRaa

Stack-Cookie-4

Stack Cookie: Weaknesses

• Fail if attacker can guess the cookie value
strcpy(buf, “AAAABBBBCCCC\x44\x33\x22\x11EEEE…”)
• (stack-cookie-1)

• Use a random value for a cookie!
• Is rand() safe (check stack-cookie-2)?

• See https://www.includehelp.com/c-programs/guess-a-random-number.aspx

0x11223344

BUFFER

BUFFER

BUFFER

SAVED %ebp

RETURN ADDR

AAAA

BBBB

CCCC

EEEE

0x8044535 RET

Cookie

Stack-Cookie-1 and -2

https://www.includehelp.com/c-programs/guess-a-random-number.aspx

Stack Cookie: Weaknesses

• Security in 32-bit Random Cookie
• One chance over 232 (4.2 billion) trial
• Seems super secure!

• Fail if attacker can read the cookie value…

• Maybe you can’t read %gs:0x14
• But, what about -0xc(%ebp)?

0x83ec5589

BUFFER

BUFFER

BUFFER

SAVED %ebp

RETURN ADDR RET

Cookie

Stack Cookie: Weaknesses

• Security in 32-bit Random Cookie
• One chance over 232 (4.2 billion) trial
• Seems super secure!

• Attacker can break this in 1024 trial
• If application uses fork();

0x83ec5589

BUFFER

BUFFER

BUFFER

SAVED %ebp

RETURN ADDR RET

Cookie

Stack Cookie: Weaknesses

• Random becomes non-random if fork()-ed..

0x83ec5589

BUFFER

BUFFER

BUFFER

SAVED %ebp

RETURN ADDR RET

Cookie0x83ec5589

BUFFER

BUFFER

BUFFER

SAVED %ebp

RETURN ADDR RET

Cookie fork()!

Stack Cookie: Weaknesses

• Servers…

0x83ec5589

BUFFER

BUFFER

BUFFER

SAVED %ebp

RETURN ADDR

0x83ec5589

BUFFER

BUFFER

BUFFER

SAVED %ebp

RETURN ADDR fork()!

0x83ec5589

BUFFER

BUFFER

BUFFER

SAVED %ebp

RETURN ADDR

fork()!
0x83ec5589

BUFFER

BUFFER

BUFFER

SAVED %ebp

RETURN ADDR

fork()!

Why?

Bypassing Stack Cookies

• Assumption
1. A server program contains a sequential buffer overflow vulnerability
2. A server program uses fork()
3. A server program let the attacker know if it detected stack smashing or not

• E.g., an error message, “stack smashing detected”, etc.

Bypassing Stack Cookies

• Attack
• Try to guess only the last byte of the cookie
• 0x00 ~ 0xff (256 trials)

• Result
• Stack smashing detected on

• 00, 01, 02, 03, …, 0x88
• When testing 0x89

• No smashing and return correctly

0x83ec5589

BUFFER

BUFFER

BUFFER

SAVED %ebp

RETURN ADDR

AAAA

BBBB

CCCC

00010289

0x83ec5589

Bypassing Stack Cookies

• Attack
• Try to guess the second last byte of the cookie
• 0x00 ~ 0xff (256 trials)

• Result
• Stack smashing detected on

• 00, 01, 02, 03, …, 0x54
• When testing 0x55

• No smashing and return correctly

0x83ec5589

BUFFER

BUFFER

BUFFER

SAVED %ebp

RETURN ADDR

AAAA

BBBB

CCCC

8900010255

0x83ec5589

Bypassing Stack Cookies

• An easy side-channel attack
• Max 256 trials to match 1 byte value
• Move forward if found the value

• In 32-bit: 4 X 256 = max 1,024 trials
• In 64-bit: 8 X 256 = max 2,048 trials

• Security vs. Performance
• Stack Cookies pay some performance degradation for some grade of security

Data Execution Prevention (DEP)

• A.K.A. No-Execute (NX)

• Q: Know how to exploit a buffer overflow vuln. What’s next?
• A: Jump to your shellcode!

• Another Q: why do we let the attacker run a shellcode? Block it!
• Attacker uploads and runs shellcode in the stack
• Stack only stores data
• Why stack is executable?

• Make it non-executable!

All Readable Memory used to be Executable

• Intel/AMD CPUs
• No executable flag in page table entry – only checks RW
• AMD64 – introduced NX bit (No-eXecute, in 2003)

https://de-engineer.github.io/Virtual-Address-Translation-and-structure-of-PTE/

Non-executable Stack

• Now most of programs built with non-executable stack

• Then, how to run a shell?
• call system(“/bin/sh”) likewise how we called execute_me()
• What if the program does not have system() in the code?

• Library!
• Return-to-Libc

Dynamically Linked Library

• When you build a program, you use functions from library
• printf(), scanf(), read(), write(), system(), etc.

• Where does that function reside?
• 1) In the program
• 2) In #include <stdio.h>, the header file
• 3) Somewhere in the process’s memory

How a Program is Loaded…

• execve(target, …, …)
• Load the target ELF file first
• Load required libraries for the target ELF (header contains the list)
• Build stack, heap and other memory
• Run!

Finding libc Functions

• GDB

• Why?
• You should RUN the program to see linked libraries

Finding libc Functions

• GDB

Stack Overflow Again

• Now you know where system()is!

• “A” * 0x80 + “BBBB” + “\x40\x19\xe4\xf7”
• This will run system()
• But how to run system(“/bin/sh”) or system(“a”)?

Function Call and Stack

• Arguments
• 0x8(%ebp) is the 1st argument
• 0xc(%ebp) is the 2nd argument
• …

• What if we call ‘system()’ by changing
‘Ret’?

0x83ec5589

Local 2

Local 3

Local 4

SAVED %ebp

RETURN ADDR RET

ARG 1

ARG 2

%ebp

%esp

Local 1

Function Call and Stack

• Overflow
• Leave

mov %ebp, %esp
mop %ebp

• Return
pop %eip

0x83ec5589

Local 2

Local 3

Local 4

SAVED %ebp

RETURN ADDR RET

ARG 1

ARG 2

%ebp

%esp
AAAA

Local 1

AAAA

AAAA

AAAA

AAAA

system()

%ebp = 0x41414141

%esp

%esp

Function Call and Stack

• Executing system()
push %ebp
mov %ebp, %esp
sub $0x10c, %esp

• Argument access
• What is 0x8(%ebp)?

• ARG2 of the vulnerable function will be ARG1
• Ret addr + 8!

0x83ec5589

Local 2

Local 3

Local 4

SAVED %ebp

RETURN ADDR

ARG 1

ARG 2

AAAA

Local 1

AAAA

AAAA

AAAA

AAAA

system()

%ebp = 0x41414141

%esp
AAAA

%esp%ebp

%esp

0x4(%ebp)

0x0(%ebp)

0x8(%ebp)

SAVED %ebp

RETURN ADDR

ARG 1

ARG 2

%ebp

Calling System(“/bin/sh”)

• Let’s overwrite
• RET ADDR = addr of system()
• ARG2 = “/bin/sh”

0x83ec5589

Local 2

Local 3

Local 4

SAVED %ebp

RETURN ADDR RET

ARG 1

ARG 2

%ebp

%esp

Local 1

ARG 3

ARG 4

ARG 5

AAAA

AAAA

AAAA

AAAA

AAAA

System()

BBBB

Addr of “/bin/sh”

Calling System(“/bin/sh”)

• Let’s overwrite
• RET ADDR = addr of system()
• ARG2 = “/bin/sh”

• When running system…
0x83ec5589

Local 2

Local 3

Local 4

SAVED %ebp

RETURN ADDR RET

ARG 1

ARG 2

%ebp

%esp

Local 1

ARG 3

ARG 4

ARG 5

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

BBBB

Addr of “/bin/sh” 0x8(%ebp)

Calling Multiple Functions

• What if system() returns?
• 0x0(%ebp) = saved %ebp
• 0x4(%ebp) = return address

• Return to ‘BBBB’
• Can we change this?

0x83ec5589

Local 2

Local 3

Local 4

SAVED %ebp

RETURN ADDR RET

ARG 1

ARG 2

%ebp

%esp

Local 1

ARG 3

ARG 4

ARG 5

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

BBBB

Addr of “/bin/sh” 0x8(%ebp)

Calling Multiple Functions

system(“/bin/sh”)
printf(“asdf”)

• Hmm, we can run multiple functions!
0x83ec5589

Local 2

Local 3

Local 4

SAVED %ebp

RETURN ADDR RET

ARG 1

ARG 2

%ebp

%esp

Local 1

ARG 3

ARG 4

ARG 5

AAAA

AAAA

AAAA

AAAA

AAAA

system()

printf()

Addr of “/bin/sh” 0x8(%ebp)

Addr of “asdf”

DEP: Assignments

• Dep-1
• Run some_function() in the program

• Exploit PATH env to run sh!

• Dep-2
• No some_function(). Run system() in the library

• Dep-3
• No library (static binary). Run 3 functions

some_function();
read(3, some_stack_address, 0x100);
printf(some_stack_address);

DEP-3

• Program is statically linked
• No libc, but have some functions in the program

• printf(), read(), etc.

• some_function()
• Takes no argument
• Opens a.txt

• Will return the file descriptor number 3
• Hint: create a symlink to flag-3 as “a.txt”

DEP-3

• Call three functions

0x83ec5589

Local 2

Local 3

Local 4

SAVED %ebp

RETURN ADDR RET

ARG 1

ARG 2

%ebp

%esp

Local 1

ARG 3

0xffffd100

0x00000100

AAAA

AAAA

AAAA

AAAA

AAAA

some_func()

read()

printf() 0x8(%ebp)

0x00000003

some_function()
// Opens a.txt as fd 3

read(3, 0xffffd100, 0x100)
// Read 0x100 (256) bytes from fd 3
// (a.txt, which should be a flag)

printf(0xffffd100)
// Print string data stored at 0xffffd100

Address Space Layout Randomization (ASLR)

• Attackers need to know which address to control (jump/overwrite)
• Stack - shellcode
• Library - system();
• Heap – chunks metadata (will learn this later)

• Defense: let’s randomize it!
• Attackers do not know where to jump…
• Win!

Compiling, Linking and Loading

59https://people.cs.pitt.edu/~xianeizhang/notes/Linking.html

ELF header

Program header table
(required for executables)

.text section

.data section

.bss section

.symtab

.debug

Section header table
(required for relocatables)

0
Executable Object File Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%esp
(stack
pointer)

Memory
invisible to user code

brk

0x400000

Read/write data segment
(.data, .bss)

Read-only code segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

.rodata section

.line

.init section

.strtab

Loading Executable Object Files into Virtual Address

60

ASLR: Randomize Addresses per Each
Execution

Space Entropy Chance

32bit stack 19 bits 1 in 524288

32bit heap 13 bits 1 in 8192

32bit library 8 bits 1 in 512

64bit stack 30 bits 1 in 1G…

64bit heap 28 bits 1 in 128M

64bit library 28 bits 1 in 128M

64bit Windows 19 bits 1 in 524288

How Random is the Address?

ASLR - History

ASLR - History

• Linux PaX adapt this first in 2002
• OpenBSD – 2003
• Linux – 2005
• Windows – Vista in 2007
• iOS – iOS 4.3 in 2011
• Android – Android 4.0 ICS in 2011

ASLR - History

• Linux PaX adapt this first in 2002
• OpenBSD – 2003
• Linux – 2005
• Windows – Vista in 2007
• iOS – iOS 4.3 in 2011
• Android – Android 4.0 ICS in 2011

Relativism

• < 1% in 64-bit

• Access all strings via relative address from current %rip
lea 0x23423(%rip), %rdi

CODE

DATA

PRINTF

”asdf”

0x23423

printf(”asdf”)

Relativism (32 bit)

• ~ 3% in 32-bit
• Cannot address using %eip

• How?
call +5; pop %ebx; add $0x23423, %ebx; ß GETTING %EIP to %EBX

CODE

DATA

PRINTF

”asdf”

0x23423

and + $0x23423

• 64-bit support %rip addressing: ~ 1% overhead
printf(”asdf”);
• Access all strings via relative address from current %rip

lea 0x23423(%rip), %rdi

• 32-bit no support %eip addressing: ~ 3% overhead
• How? (thunk)

call +5
pop %ebx ß GETTING EIP to EBX
add $0x23423, %ebx

Overhead? CODE

DATA

PRINTF

”asdf”

0x23423
(offset)

Segment Base

CAVEAT

• To have a strong defense, systems must randomize all addresses (or
segments)
• Code, data, stack, heap, library, mmap(), etc.

• However, Code/data still merely randomized
• Why? Some compatibility issue…

Position Independent Executable (PIE)

/bin/cat from Ubuntu 16.04.3 /bin/sh from Ubuntu 16.04.3

Then, How Can We Bypass ASLR?

• Brute-force
• Get a core dump
• Set that address
• Run for N times!

• Eventually the address will be matched..
• Look at the table

• Requires too many trials in some cases…

Space Entropy Chance

32bit stack 19 bits 1 in 524288

32bit heap 13 bits 1 in 8192

32bit library 8 bits 1 in 512

64bit stack 30 bits 1 in 1G…

64bit heap 28 bits 1 in 128M

64bit library 28 bits 1 in 128M

64bit Windows 19 bits 1 in 524288

Leak address

• Information Leak
• Leak the target address!
• Use shellcode – stack buffer or argv, envp, stack top, etc.
• Libc? Where is the system()?

• But leaking the exact target address could be difficult

Understanding ASLR Characteristics

• How do they randomize the address?
• Change the BASE address of each area
• Use relative addressing in the area

• Relative addressing?
• Kernel let program know where the start is

• 0xffffd800 if stack starts at 0xffffe000
• STACK_START – 0x800 is that address

• system()?
• LIBC_BASE + SYSTEM_OFFSET == system()

• Attacker cannot know this

ASLR Bypass Strategy

• Stack
• Leak one address

• Calculate the distance between the leaked one and the one with your interest
• BUFFER_ADDRESS – LEAKED_ADDRESS = OFFSET

• Leak one address in your exploit
• LEAKED_ADDRESS + OFFSET = LEAKED_ADDRESS

• Calculate the OFFSET from the core dump!

ASLR Bypass Strategy

• Library
1. ldd first
2. Open that library with gdb
3. Print functions!

• Prints offset

• Attacking Library
• Leak one library address
• Find what is the base address (LEAK is BASE + SOME_OFFSET)
• Calculate SYSTEM (LEAK – SOME_OFFSET + SYSTEM_OFFSET)

Catch

• To have a strong defense, systems must randomize all addresses
(or segments)
• Code, data, stack, heap, library, mmap(), etc.

• However, code/data segment still merely randomized
• Why? Performance, compatibility issue…

Position Independent Executable (PIE)

/bin/cat from Ubuntu 16.04.3 /bin/sh from Ubuntu 16.04.3

Assignment: Unit-4

• aslr-1
• Leaks buffer address

• aslr-2
• Leaks some stack address (use relative addressing to get the buffer address!)

• aslr-3
• Leaks some variables in the stack (use relative addressing, too)
• Think about how you may utilize the leak after submitting your input…

• aslr-4
• Leaks the address of printf (use relative addressing to figure out system()’s address)

Assignment: Unit-4

• aslr-5
• Program contains a function that you can leak some addresses. Call that to leak.

• After that, use that address for your exploit (without invoking a new process() again)

Assignment: Unit-4

• ASLR: connect to ctf-vm3.syssec.utdallas.edu
• The same credential should work (id, private key, etc.)

• Challenges are in /home/labs/unit4
• Run fetch unit4

• Have fun!

