
CS4459.001
Cyber Attacks & Defense Lab

Arbitrary Read / Write and Format String Vulnerability
Apr 2, 2024

1

Unit-6 • Challenges in the /home/labs/unit6 directory
• Hosted in ctf-vm2

• Serial Read, Arbitrary Read (AR), Arbitrary Write (AW)
• Level 0 ~ 3

• Format String Vulnerability (FSV) - 32 / 64 bits
• Level 4/5, 6/7, 8/9, a/b, c/d

• PIE-enabled binary
• Level e (40 point)
• Level f (bonus 50 point)

2

Unit-6

Serial Read (sr), Arbitary Read (ar),
Arbitrary Write (aw)

• 0-sr-1, 1-ar-2: 15 pts
• 2-aw-1, 20 pt, 3-aw-2: 20 pts

Format string 32|64
• 4-fs-read-1-32, 5-fs-read-1-64, 20 pts
• 6-fs-read-2-32, 7-fs-read-2-64, 20 pts
• 8-fs-arbt-read-32, 9-fs-arbt-read-64,

25 pts

• a-fs-arbt-write-32, b-fs-arbt-write-64,
30 pts

• c-fs-code-exec-32, d-fs-code-exec-64,
30 pts

PIE challenges (bonuses)
• e-fs-code-exec-pie-64, 40 pt
• f-fs-no-binary-pie-64, 50 pt

3

Buffer Overflow (BoF) and
Control Flow Hijacking (CFH)

• BoF has been our primary attack vector
• To hijack control flow and deviate

• BoF: fill the buffer more than its size
• Overwriting return address (saved %eip)
• Overwriting frame pointer (saved %ebp)

• Control Flow Hijacking
• Return to shellcode: Run your own code
• Return to some other functions: Code re-use attack
• Return to ROP gadgets: Code re-use attack with ROP gadgets

COOKIE

BUFFER

BUFFER

BUFFER

SAVED %ebp

RETURN ADDR

AAAA

BBBB

CCCC

DDDD

shellcode

Control Flow Hijacking (CFH)

• Entry points to CFH
• RET / JMP / CALL to shellcode
• RET / JMP / CALL to some other functions
• RET / JMP / CALL to ROP gadgets

• Targets to overwrite
• Return address
• Global offset table (GOT)
• Function pointers
• Jump table entry

Eventually we seek to gain
control over %EIP / %RIP

ELF, PLT, GOT

GOT

Program

printf()

PLT
printf()

strcpy()

read()

_resolve

_resolve

_resolve

Libc

printf()
…

strcpy()
…

read()
…

_dl_dynamic_resolve

The program
Calls a function
In PLT

PLT jumps to GOT

GOT stores addr of _dl_dynamic_resolve

7fa174b06800

What is the Requirement for CFH?

• Is buffer overflow the only way to achieve Control Flow Hijacking?
• Overwriting return address (saved %eip)
• Overwriting frame pointer (saved %ebp)

• What we need is the capability to overwrite certain
address
• Arbitrary write!

• Today we will learn arbitrary read/write

COOKIE

BUFFER

BUFFER

BUFFER

SAVED %ebp

RETURN ADDR

SAVED %ebp

RETURN ADDR

Attack Primitives

• Arbitrary Read
• Read from any address A, any number N of bytes
• The attacker must know the address A

• Example:
• Read 100 bytes from 0xffffd100 (somewhere in the stack)
• Read 100 bytes from 0x8048500 (somewhere in the code section)

• Can this break:
• Stack-Cookie?
• ASLR?
• DEP?

Breaking Stack-Cookie

• The cookie value is on the stack

• Sequential read can break stack-cookie easily

COOKIE

BUFFER

BUFFER

BUFFER

SAVED %ebp

RETURN ADDR

Sequential Read Example

• ASLR-3
• Leak addresses via sequential leaks from one point

of the stack
• We do not know ‘A’, but can specify ‘N’
• Sometimes this is more powerful than arbitrary

read

Breaking Stack-Cookie

• The cookie value is on the stack

• Arbitrary Read
• Read where?
à The address that the cookie is stored!

• Then launch buffer overflow attack

• You should know the address of the stack..

COOKIE

BUFFER

BUFFER

BUFFER

SAVED %ebp

RETURN ADDR

Breaking ASLR

• Arbitrary Read
• Read anywhere if you know the address…

• Read where?
• Non-PIE: Code section is fixed 0x8048000 ~ 0x804a000

• 0x401000 ~ and 0x601000 in 64 bit

• Stack – random
• Library – random
• Heap – random

• Code/data sections are the only fixed locations

Breaking ASLR + DEP

• GOT stores address of libc functions
• printf(), puts(), read(), etc.

Breaking ASLR + DEP

• Read a value from GOT
• Can get the address of puts()

• Can you calculate the addresses of execve() or system() from puts?

• Yes
• Load libc and find offsets, diff, and calculate

Attacking Global Offset Table (GOT)

• Read the address in GOT

• Leak the address of puts()

• Calculate the address of execve() or system() from the offset

Challenges: Unit6

• sr-1
• The program will perform a sequential read from the stack for you
• Read addresses from the leak and exploit the vulnerability!

• ar-2
• You may perform arbitrary read

• Can specify where to read and how many bytes to read
• Read GOT of some functions to get the address of that function in libc
• Call system(), execve(), whatever you want!

Attack Primitives

• Arbitrary Write (AR)
• Write on any address, any number of bytes
• The attacker must know the address

• Example:
• Write 100 bytes of data to 0xffffd100 (somewhere in the stack)
• Write 100 bytes of data to 0x8048500 (somewhere in the code section)

• Can achieve Control Flow Hijacking
• Overwrite return address
• Overwrite frame pointer
• Overwriting GOT

Attacking Global Offset Table (GOT)

• Attack Outline

1. Read the address in GOT
2. Leak the address of printf()
3. Calculate the address of system() from the offset

4. Write that address system() to printf()’s GOT
• What will happen a program calls printf() ?

ELF, PLT, GOT

GOT

Program

printf()

PLT
printf()

strcpy()

read()

libc_printf

libc_strcpy

libc_read

Libc

printf()
…

strcpy()
…

read()
…

The program
Calls a function
In PLT

PLT jumps to GOT

GOT stores libc addr

ELF, PLT, GOT

GOT

Program

printf()

PLT
printf()

strcpy()

read()

libc_printf

libc_strcpy

libc_read

Libc

printf()
…

strcpy()
…

read()
…

The program
Calls a function
In PLT

PLT jumps to GOT

GOT stores libc addr

libc_SYSTEM

Attacks with Arbitrary Write

• GOT address is known for non-PIE

• Choose one function that is called in the program

• Overwrite the GOT of printf() to system()
• What will happen?

system(“Writing %lu bytes to %p\n”); // ??

Arbitrary-Write-1 (AR-1)

• Change the GOT of printf() to to ‘please_execute_me()’ via
arbitrary write capability!

• printf() after the BoF vulnerability will run that function for you.

Arbitrary-Write-2 (AR-2)

• Program contains both arbitrary-read (ar) and arbitrary-write (aw)
vulnerabilities.
• Exploit arbitrary-read (ar) to get the address of libc function
• Then calculate the address of system()

• Exploit arbitrary write to overwrite the GOT of printf() to
system()

printf("Writing %lu bytes to %p\n”);
system(“Writing %lu bytes to %p\n”);

ONE GADGET

24

ONE GADGET

• Or you may take a simpler approach

Why one_gadget exists?

• When we jump to the start of system()
• Expects 1st arg is the command (either %rdi or 1st arg on the stack)
• Run

 execve(“/bin/sh”, [“sh”, “-c”, command, NULL], environ);

• When we jump in the middle of system()
• Skip the part that set up arguments
• Call

 execve(“/bin/sh”, rsp + 0x30, environ);
• What if %rsp + 0x30 == 0?

system(“command”)
1. fork() // parent waits
2. execve(“/bin/sh”, [“sh”, “-c”, command,

NULL], environ) // child

Why one_gadget exists?
• When we jump in the middle of system()
• Skip the part that set up arguments
• Call execve(“/bin/sh”, rsp+0x30, environ);
• What if %rsp+0x30 == 0?
• What if %rax == 0?
• What if %rsp+0x50 == 0?
• What if %rsp+0x70 == 0?

• Use it with care…

one_gadget

28

(0x45281 + 7) + 0x147B8F = 0x18ce17

Format String Vulnerability

29

In ASLR-2

• What kind of information this will print???

• 15 values of %p (print hexadecimal number as 0x????????, an addr)

• No arguments…

Format String Vulnerability
• Format String

printf(“%d %x %s %p %n\n”, 1, 2, “asdf”, 3, &i);

• The vulnerability

char buf[512];
printf(“%s”, buf);
printf(buf);

• If you can control a format string, you may inject arbitrary directives
• %d %x %p %s %n etc.

Format String Vulnerability

• Format String

printf(“%d %x %s %p %n\n”, 1, 2, “asdf”, 3, &i);

• Can be exploited as:
• Arbitrary READ (ar)
• Arbitrary WRITE (aw)

The Format String

• Usage
printf(“%d %x %s”, 0, 65, “asdf”);

à variable number of arguments

• This will print 0 (decimal), 41 (hexadecimal), and “asdf”

• % parameters
• % is a special identifier in the Format String
• % seeks for an argument (corresponding to its order…)

Format String Parameters

%d
• Expects an integer value as its argument and print a decimal number

%x
• Expects an integer value as its argument and print a hexadecimal number
 8048000

%p
• Expects an integer value as its argument and print a hexadecimal number
 0x8048000 # It’s pretty!

%s
• Expects an address to a string (char *) and print it as a string

Format String Syntax

%1$08d
 %[argument_position] $[length] [parameter]

• Means
• Print an integer as a decimal value
• Justify its length to length (08)
• Get the value from n-th (1) argument

• Print 8-length decimal integer, with the value at the 1st argument (padded with 0)
E.g., 00000001

Format String Parameters

printf(“%2$08d”, 15, 13, 14, “asdf”);
00000013

printf(“0x%3$08x”, 15, 13, 14, “asdf”);
0x0000000d

printf(“%3$20s”, 15, 13, 14, “asdf”);

printf(“%4$20s”, 15, 13, 14, “asdf”);
 asdf

%d : Integer decimal %x : Integer hexadecimal %s : String

fs-read-1-(32|64)

• Exploit a format string vulnerability to leak pointers from stack
• Guess the random value correctly to get the shell!

fs-read-2-(32|64)
• Exploit a format string vulnerability to leak pointers from stack
• You have limited size for your format string as your input
• Use directives like %100$x
• To skip some uninterested parts of the stack

Backup

39

Tanenbaum–Torvalds Debate

40

Heard of it.
Professor Tanenbaum,
 Do you know Linux?

https://www.oreilly.com/openbook/opensources/book/appa.html

Who is Linus Torvalds?

• Do I have to tell you?
• Two major contributions to the world
• Which one do you think is bigger?

41From https://github.com/torvalds

Who is Tanenbaum?

• A Dutch
• OS book
• with Herbert Bos

42

Tanenbaum–Torvalds debate

43

Heard of it.
Professor Tanenbaum,
 Do you know Linux?

https://www.oreilly.com/openbook/opensources/book/appa.html

• Micro-kernel vs. Monolithic kernel
• Portability
• Open-source model
• Do we need to share the source?

