CS4459.001
Cyber Attacks & Defense Lab

Arbitrary Read / Write and Format String Vulnerability
Apr 2, 2024

Unit-6 * Challenges in the /home/labs/unit6 directory

* Hosted in ctf-vm2

 Serial Read, Arbitrary Read (AR), Arbitrary Write (AW)
e LevelO™~3

* Format String Vulnerability (FSV) - 32 / 64 bits
* Level 4/5, 6/7, 8/9, a/b, c/d

* PIE-enabled binary
* Level e (40 point)
* Level f (bonus 50 point)

Unit-6

Serial Read (sr), Arbitary Read (ar),
Arbitrary Write (aw)

* 0-sr-1, 1-ar-2: 15 pts

* 2-aw-1, 20 pt, 3-aw-2: 20 pts

Format string 32|64
* 4-fs-read-1-32, 5-fs-read-1-64, 20 pts
* 6-fs-read-2-32, 7-fs-read-2-64, 20 pts
o 8-fs-arbt-read-32, 9-fs-arbt-read-64,
25 pts

* a-fs-arbt-write-32, b-fs-arbt-write-64,
30 pts

» c-fs-code-exec-32, d-fs-code-exec-64,
30 pts

PIE challenges (bonuses)
» e-fs-code-exec-pie-64, 40 pt
» f-fs-no-binary-pie-64, 50 pt

Buffer Overflow (BoF) and
Control Flow Hijacking (CFH)

* BoF has been our primary attack vector
* To hijack control flow and deviate

* BoF: fill the buffer more than its size
* Overwriting return address (saved %eip)
* Overwriting frame pointer (saved %ebp)

* Control Flow Hijacking

* Return to shellcode: Run your own code
e Return to some other functions: Code re-use attack

* Return to ROP gadgets: Code re-use attack with ROP gadgets

shellcode

DDDD

COOKIE

CCCC

BBBB

JAVAVAVAN

Control Flow Hijacking (CFH)

* Entry points to CFH
* RET / JMP / CALL to shellcode
* RET / JMP / CALL tosome other functions
« RET / JMP / CALL to ROP gadgets

* Targets to overwrite
* Return address
* Global offset table (GOT)
* Function pointers
* Jump table entry

ELF, PLT, GOT

The program
Calls a function
In PLT

Libc
printf()

strcpy()

rez‘a"d()

_dl_dynamic_resolve

PLT
printf()

strcpy()
read()

Program

printf()

7fal174b06800
_resolve

_resolve

GOT stores addr of _dl_dynamic_resolve

PLT jumps to GOT

What is the Requirement for CFH?

* Is buffer overflow the only way to achieve Control Flow Hijacking?
* Overwriting return address (saved %e1ip)

. : RETURN ADDR
* Overwriting frame pointer (saved %ebp)

SAVED %ebp

COOKIE

* What we need is the capability to overwrite certain

address

* Arbitrary write!

» Today we will learn arbitrary read/write

Attack Primitives

* Arbitrary Read

* Read from any address A, any number N of bytes
* The attacker must know the address A

* Example:
* Read 100 bytes from Oxffffd100 (somewhere in the stack)
* Read 100 bytes from 0x8048500 (somewhere in the code section)

e Can this break:
e Stack-Cookie?
e ASLR?

v
- DEP? v

Breaking Stack-Cookie

* The cookie value is on the stack

RETURN ADDR

printf();

scanf(, &l); SAVED %ebp
printf()5

write(1, buf, 1);

orintf(3, COOKIE

* Sequential read can break stack-cookie easily

Sequential Read Example

* ASLR-3

* Leak addresses via sequential leaks from one point
of the stack

* We do not know ‘A’, but can specify ‘N’

* Sometimes this is more powerful than arbitrary
read

kjeeactf-vm2.utdallas.edu: /h { $./aslr-3
our buffer? I don't wanna let you know my address

Please type your name:

kangkook

ow many bytes of your name do you want to print?

Challenge

aslr-3
20

You can print as much buffers as you want. Can you still find
me?

Flag Submit

Breaking Stack-Cookie

* The cookie value is on the stack

* Arbitrary Read

 Read where?
- The address that the cookie is stored!

* Then launch buffer overflow attack

* You should know the address of the stack..

RETURN ADDR

SAVED %ebp

COOKIE

Breaking ASLR

 Arbitrary Read
* Read anywhere if you know the address...

e Read where?
* Non-PIE: Code section is fixed Ox8048000 ~ 0x804a000

* Ox401000 ~ and ©x601000 in 64 bit

e Stack —random
* Library —random
* Heap —random

» Code/data sections are the only fixed locations

Breaking ASLR + DEP

e GOT stores address of 1ibc functions
* printf(), puts(), read(), etc.

Relocation section

Offset
000000601018
000000601020
000000601028
000000601030
000000601038
000000601040
000000601048
000000601050
000000601058
000000601060
000000601068

Info
000100000007
000200000007
000300000007
000400000007
000500000007
000700000007
000800000007
000900000007
000200000007
000bOOOOOOO7
000c00000007

Type
R_X86_64_JUMP_SLO
R_X86_64_JUMP_SLO
R_X86_64_JUMP_SLO
R_X86_64_JUMP_SLO
R_X86_64_JUMP_SLO
R_X86_64_JUMP_SLO
R_X86_64_JUMP_SLO
R_X86_64_JUMP_SLO
R_X86_64_JUMP_SLO
R_X86_64_JUMP_SLO
R_X86_64_JUMP_SLO

Sym. Value
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000

0000000000000000 __

0000000000000000
0000000000000000
0000000000000000

.rela.plt' at offset 0x560 contains 11 entries:

Sym. Name + Addend
puts@GLIBC_2.2.5 + O
printf@GLIBC_2.2.5 + 0
read@GLIBC_2.2.5 + 0

__libc_start_main@GLIBC_:

fgets@GLIBC_2.2.5 + 0O
prctl@GLIBC_2.2.5 + 0O

fflush@GLIBC_2.2.5 + 0
1s0c99_sscanf@GLIBC_2.’
getegid@GLIBC_2.2.5 + 0
setregid@GLIBC_2.2.5 + 0
fwrite@GLIBC_2.2.5 + 0

Breaking ASLR + DEP

* Read a value from GOT
* Can get the address of puts()

* Can you calculate the addresses of execve() or system() from puts?

* Yes
* Load libc and find offsets, diff, and calculate

kjee@ctf-vm2.utdallas.edu: /h t6/ $ 1dd sr-1
linux-vdso.so.1 => (0x00007ffd297ca000)

libc.so0.6 => /1ib/x86_64-1inux-gnu/libc.so0.6 (0x00007f1812f73000)
/1ib64/1d-1inux-x86-64.50.2 (0x00007f181333d000)

Attacking Global Offset Table (GOT)

* Read the address in GOT
 Leak the address of puts()

* Calculate the address of execve() or system() from the offset

Challenges: Unit6

°sr-1
* The program will perform a sequential read from the stack for you
* Read addresses from the leak and exploit the vulnerability!
*ar-2
* You may perform arbitrary read
e Can specify where to read and how many bytes to read
* Read GOT of some functions to get the address of that function in libc
 Call system(), execve(), whatever you want!

Attack Primitives

* Arbitrary Write (AR)
* Write on any address, any number of bytes
* The attacker must know the address

* Example:
* Write 100 bytes of data to Oxffffd100 (somewhere in the stack)
* Write 100 bytes of data to 9x8048500 (somewhere in the code section)

* Can achieve Control Flow Hijacking
e Overwrite return address
* Overwrite frame pointer
* QOverwriting GOT

Attacking Global Offset Table (GOT)

e Attack Outline

1. Read the addressin GOT

2. Leakthe address of printf()
3. Calculate the address of system() from the offset

4. \Write that address system() toprintf()’s GOT
» What will happen a program calls printf() ?

ELF, PLT, GOT

Libc
printf()

strcpy()

re;;j()

The program
Calls a function
In PLT

GOT stores libc addr

PLT

printf()

strcpy()
read()

Program

printf()

libc_printf

libc_strcpy

libc_read

PLT jumps to GOT

ELF, PLT, GOT

Libc
printf()

strcpy()

re;;j()

The program
Calls a function
In PLT

GOT stores libc addr

PLT

printf()

strcpy()
read()

Program

printf()

libc_SYSTEM

libc_strcpy

libc_read

PLT jumps to GOT

Attacks with Arbitrary Write

e GOT address is known for non-PIE

* Choose one function that is called in the program
printf(, read_bytes, ptr);
}

* Overwrite the GOT of printf() tosystem()
* What will happen?

system(“Writing %lu bytes to %p\n”); //??

Arbitrary-Write-1 (AR-1)

* Change the GOT of printf() toto ‘please execute me()’ via
arbitrary write capability!

* printf() after the BoF vulnerability will run that function for you.

Arbitrary-Write-2 (AR-2)

* Program contains both arbitrary-read (ar) and arbitrary-write (aw)
vulnerabilities.

* Exploit arbitrary-read (ar) to get the address of libc function
* Then calculate the address of system()

* Exploit arbitrary write to overwrite the GOT of printf() to
system()

printf("Writing %lu bytes to %p\n”);
system(“Writing %lu bytes to %p\n”);

ONE GADGET

ONE GADGET

e Or you may take a simpler approach

$1dd aw-2
linux-vdso.so.1l => (0x00007fffb6df4000)
libc.so0.6 => /1ib/x86_64-1inux-gnu/libc.so0.6 (0x00007f270b792000)
/1ib64/1d-1inux-x86-64.50.2 (0x00007f270bb5c000)
$
$one_gadget /1ib/x86_64-1inux-gnu/libc.s0.6
0x45226 execve("/bin/sh", rsp+0x30, environ)
constraints:
rax == NULL

0x4527a execve("/bin/sh", rsp+0x30, environ)
constraints:
[rsp+0x30] == NULL

0xf0364 execve("/bin/sh", rsp+0x50, environ)
constraints:
[rsp+0x50] == NULL

0xf1207 execve("/bin/sh", rsp+0x7@, environ)
constraints:
[rsp+0x70] == NULL

Why one gadget exists?

system(“command”)
1. fork() //parent waits
2. execve(“/bin/sh”, [“sh”, “-c”, command,
NULL], environ) // child

* When we jump to the start of system()

* Expects 15t arg is the command (either %rdi or 15t arg on the stack)

* Run
execve(“/bin/sh”, [“sh”, “-c”, command, NULL], environ);

* When we jump in the middle of system()

* Skip the part that set up arguments

e Call
execve(“/bin/sh”, rsp + 0x30, environ);

* What if %rsp + 0x30 ==07?

Why one gadget exists?

* When we jump in the middle of system()
 Skip the part that set up arguments

e What if %rsp+0x30 == 07?
* What if %rax == 07?

e What if %rsp+0x50 == 07?
e What if %rsp+0x70 == 07?

e Use it with care...

Call execve(“/bin/sh”, rsp+0x30, environ);

$1dd aw-2
linux-vdso.so.1 => (0x00007fffb6df4000)
libc.so0.6 => /1ib/x86_64-1inux-gnu/libc.so0.6 (0x00007f270b792000)
/11ib64/1d-1inux-x86-64.50.2 (0x00007f270bb5c000)
$
$one_gadget /1ib/x86_64-1linux-gnu/libc.so0.6
0x45226 execve("/bin/sh", rsp+0x30, environ)
constraints:
rax == NULL

0x4527a execve("/bin/sh", rsp+0x30, environ)
constraints:
[rsp+0x30] == NULL

0xf0364 execve("/bin/sh", rsp+0x50, environ)
constraints:
[rsp+0x50] == NULL

0xf1207 execve("/bin/sh", rsp+0x70, environ)
constraints:
[rsp+0x70] == NULL

one gadget

$ldd aw-2
linux-vdso.so.1 => (0x00007fffb6df4000)
libc.so0.6 => /1ib/x86_64-1inux-gnu/libc.so0.6 (0x00007f270b792000)
/1ib64/1d-1inux-x86-64.50.2 (0x00007f270bb5c000)

$

$one_gadget /1ib/x86_64-1inux-gnu/libc.so0.6
0x45226 execve("/bin/sh", rsp+0x30, environ)

execve("/bin/sh", rsp+0x30, environ)

e (0x45281 + 7) + Ox147B8F = 0x18cel7

0xf0364 execve("/bin/sh", rsp+0x50, environ)
raints:
[rsp+0x50] == NULL

ox e "/bin/sh", rsp+0x70@, environ) $strings —tx_/lib/x86_64—linux—gnu/1ibc.so.6 |grep bin/sh
[rsp+0x70] == NULL 18cel7| /bin/sh

0x37ec37(%rip),%rax # 3c3eb8 <_I0_file_jumps@aGLIBC_2.2.5+0x7d8>

0x147b8f (%rip), frdi | # 18cel7 <_libc_intl_domainname@@GLIBC_2.2.5+0x197>

®x3®(%rsp)

$0x0,0x381209(%rip) # 3c64a0 <__abort_msgaaGLIBC_PRIVATE+0x8c0>

$0x0,0x381203(%rip) # 3c64akt <__abort_msgaaGLIBC_PRIVATE+0x8c4>

(%rax)

cc7f0 fexecveaaGLIBC_2.2.5>

Format String Vulnerability

In ASLR-2

int check_function(void
printf("Your buffer? I don't wanna let you know my address!\nDoes these leak some?: ");
printf("%fl %p %p %p %p %p %p %p %p %p %p %p %p %p %p %p %p %p\n");

return input_func();

* What kind of information this will print???

* No arguments...

Format String Vulnerability

* Format String

printf(“%d %x %s %p %n\n”, 1, 2, “asdf”, 3, &i);

* The vulnerability

char buf[512];
printf(“%s”, buf);
printf(buf);

* If you can control a format string, you may inject arbitrary directives
e %d %X %p %S %n etc.

Format String Vulnerability

* Format String
printf(“%d %x %s %p %»n\n”, 1, 2, “asdf”, 3, &i);

* Can be exploited as:
 Arbitrary READ (ar)
* Arbitrary WRITE (aw)

The Format String

* Usage
printf(“%d %x %s”, @, 65, “asdf”);
—> variable number of arguments

* This will print O (decimal), 41 (hexadecimal), and “asdf”

* % parameters
* % is a special identifier in the Format String
* % seeks for an argument (corresponding to its order...)

Format String Parameters

%d

* Expects an integer value as its argument and print a decimal number

%X
* Expects an integer value as its argument and print a hexadecimal number

8048000
%op
* Expects an integer value as its argument and print a hexadecimal number
0x8048000 # It’s pretty!
%s

* Expects an address to a string (char *) and print it as a string

Format String Syntax

%1%$08d
%[argument position] $[length] [parameter]

* Means

* Print an integer as a decimal value

* Justify its length to length (08)
* Get the value from n-th (1) argument

* Print 8-length decimal integer, with the value at the 15t argument (padded with 0)
E.g., 00000001

Format String Parameters

%d : Integer decimal %x : Integer hexadecimal

printf(“%2$08d”, 15, 13, 14, “asdf”);
00000013

printf(“0x%3$08x”, 15, 13, 14, “asdf”);
0x0000000d

printf(“%3$20s”, 15, 13, 14, “asdf”);

printf(“%4$20s”, 15, 13, 14, “asdf”);
asdf

%s : String

fs-read-1-(32|64)

* Exploit a format string vulnerability to leak pointers from stack
* Guess the random value correctly to get the shell!

kjeedctf-vm2.utdallas.edu:/h | d-2-32 $./fs-read-2-32
Please type your name first:

%X

Hello ffc6d418

Can you guess the random?
asdf
Wrong, your random was 0xbe0@bl189b but you typed 0x0000000a

fs-read-2-(32|64)

 Exploit a format string vulnerability to leak pointers from stack
* You have limited size for your format string as your input

 Use directives like 7%100%x
* To skip some uninterested parts of the stack

~
*

On the stack, these variables will be placed in backward:
[ret addr]

[saved ebp] <-- %ebp points here
[other...]

[random - 4 bytes]

[name - 64 bytes]

[buf - 512 bytes]

[other - 4 bytes]

[arg space]

[arg space]

[arg space] <-- %esp points here...

*
*
*
*
*
*
*
*
*
*
*
*
*

check the disassembly to get a more accurate information

*
~

Backup

Tanenbaum—Torvalds Debate

Heard of it.

Professor Tanenbaum,

Do you know Linux?

@3
O

~

N
Kernel

ILTT

Software

Kernel

il

Servers

Software

Open Sources: Voices from the Open Source Revolution

15t Edition January 1999
1-56592-582-3, Order Number: 5823
280 pages, $24.95

Appendix A
The Tanenbaum-Torvalds Debate
‘What follows in this appendix are what are known in the community as the Tanenbaum/Linus "Linux is obsolete” debates. Andrew Tanenbaum is a well-respected researcher who has

‘made a very good living thinking about operating systems and OS design. In early 1992, noticing the way that the Linux discussion had taken over the discussion in comp.0s.minix,
he decided it was time to comment on Linux.

Although Andrew Tanenbaum has been derided for his heavy hand and misjudgements of the Linux kenel, such a reaction to Tanenbaum is unfair. When Linus himself heard that we
‘were including this, he wanted to make sure that the world understood that he holds no animus towards Tanenbaum and in fact would not have sanctioned its inclusion if we had not
been able to convince him that it would show the way the world was thinking about OS design at the time.

icrokernels in academia.

‘We felt the inclusion of this appendix would give a good perspective on how things were when Linus was under pressure because he abandoned the idea of
‘The first third of Linus' essay discusses this further.

Electronic copies of this debate are available on the Web and are casily found through any search service. It fun to read this and note who joined into the discussion; you see user-
‘hacker Ken Thompson (one of the founders of Unix) and David r (who is a major Linux kernel hacker now), as well as many others.

‘opur s discusion ok perspetve, when i et n 1992, the 386w the dominating chipand the 486 b ot come aut o themarkes. Mlerosof wes il smll. company
selling DOS and Word for DOS. Lotus 123 ruled the spreadsheet space and WordPerfect the word processing market, DBASE was the dominant database vendor and m:
companies that are household names today~Netscape, Yahoo, Excite--simply did not exist.

From: astécs.vu.nl (Andy Tanenbaum)
Newsgroups: comp.os.minix

ot LIX 1o cheolete
Date: 29 Jan

I was in the U.S. for a couple of weeks, 50 I haven't commented much on
LINUX (1ot that I would have said much iad I been sround), but for what
it is worth, I have a couple of comments

ha most of you kuow, for me MINIX in & bobly, somsthing tiat I do i the
evening when I get bored writing books and there are no major wa
rwvolutions, or ssuste hessiage being talavised Live on o
job is a professor and researcher in th

28 s result of my occupation, T think T Know a bit sbout where operating
are going in the next pocts stand out:

1. MICROKERNEL VS MONOLITHIC SYSTEM
Host. older operating systems are monolithic, that s, the vhole sperating
system is a single a.out file that runs in 'kernel mode. y
rntaine.the Process Ranagement, memory RarAgement. £ile syeten and the
rest. Examples of such systems are UNIX, NS-DOS, VHS, MV, 05/360
MULTICS, and many more.

The alternative is a microkernel-based system, in which most of the 0S
runs as separate processes, mostly outside the kernel. They communicate
ssage passing. The kernel's job is to handle th

interrupt handling, low-level process management, and possibly the /0.
Exanples of this design are the RC4000, Amoeba, Chorus, Mach, and th
not-vat-raleased Windows/NT.

https://www.oreilly.com/openbook/opensources/book/appa.html

40

Who is Linus Torvalds?

* Do | have to tell you?

* Two major contributions to the world
* Which one do you think is bigger?

2,557 contributions in the last year

Nov Dec Jan Feb Mar Apr May Jun Jul Aug
[[
Mon o [[[
[[O O
Wed a8 O O
[
Fri [[]
O

Learn how we count contributions

From https://github.com/torvalds

Sep Oct

Less B 88 More

41

TANENBAUM MODERN

. HERDERT OPERATING
Who is Tanenbaum? , SYSTEMS

Fourth Edition
* A Dutch =g A
* OS book o) SR i

* with Herbert Bos i W 3

<o MINIX 3

Tanenbaum—Torvalds debate

Heard of it.
Professor Tanenbaum, * Micro-kernel vs. Monolithic kernel

Do you know Linux?

S * Portability

.

Stop flaming, MINIX and Linux are two different systems with different
purposes. One is a teaching tool (and a good one I think), the other is
real UNIX for real hackers.

nu'yuuc Wil DG'YD .YULI. “vall i11iavec a 41Vl vl WJ-UCJ-_Y UJ-DPCJ-DCU PCUHJ-C liacvn a.wa.y Vil
a complicated piece of code and avoid total anarchy has never managed a
software project.

=2

{ Kernel

LT

L Software }

Kernel

IPC

. j:ESoftware

https://www.oreilly.com/openbook/opensources/book/appa.html 43

